1123 words - 4 pages

The Copenhagen Interpretation

The Copenhagen Interpretation

So sometimes a particle acts like a particle and other times it acts like a wave. So which is it? According to Niels Bohr, who worked in Copenhagen when he presented what is now known as the Copenhagen interpretation of quantum theory, the particle is what you measure it to be. When it looks like a particle, it is a particle. When it looks like a wave, it is a wave. Furthermore, it is meaningless to ascribe any properties or even existence to anything that has not been measured21. Bohr is basically saying that nothing is real unless it is observed.

While there are many other interpretations of quantum physics, all based on the Copenhagen interpretation, the Copenhagen interpretation is by far the most widely used because it provides a "generic" interpretation that does not try to say any more then can be proven. Even so, the Copenhagen interpretation does have a flaw that we will discuss later. Still, since after 70 years no one has been able to come up with an interpretation that works better then the Copenhagen interpretation, that is the one we will use. We will discuss one of the alternatives later.

The Wave Function

In 1926, just weeks after several other physicists had published equations describing quantum physics in terms of matrices, Erwin Schrödinger created quantum equations based on wave mathematics22 , a mathematical system that corresponds to the world we know much more then the matrices. After the initial shock, first Schrödinger himself then others proved that the equations were mathematically equivalent 23. Bohr then invited Schrödinger to Copenhagen where they found that Schrödinger's waves were in fact nothing like real waves. For one thing, each particle that was being described as a wave required three dimensions 24. Even worse, from Schrödinger's point of view, particles still jumped from one quantum state to another; even expressed in terms of waves space was still not continuous. Upon discovering this, Schrödinger remarked to Bohr that "Had I known that we were not going to get rid of this damned quantum jumping, I never would have involved myself in this business." 25

Unfortunately, even today people try to imagine the atomic world as being a bunch of classical waves. As Schrödinger found out, this could not be further from the truth. The atomic world is nothing like our world, no matter how much we try to pretend it is. In many ways, the success of Schrödinger's equations has prevented people from thinking more deeply about the true nature of the atomic world 26.

The Collapse of the Wave Function

So why bring up the wave function at all if it hampers full appreciation of the atomic world? For one thing, the equations are much more familiar to physicists, so Schrödinger's...

Get inspired and start your paper now!